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Introduction
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To explore the effect of Sn doping on the V2O5 electrode mainly defect/carrier 

formation and Li-electron transport based on atomistic model calculations.

❑ Layered structures of V2O5 → accommodate Li+

❑ It can be used as cathode materials.

V2O5 cathodes of Li-ion batteries

Li+ Intercalation

High theoretical capacity 442 mAh g-1

(commercial LiCoO2 : 272 mAh g-1)

Poor structural stability

Low electronic and ionic conductivity

Sn doping Exhibits better electrochemical performances 

I) higher capacity  II) faster kinetics  III) better cyclability

The role of Sn doping is still unclear such as the defect site is still under debate.
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1. Sn interstitial
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2. Sn substitution for V
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Possible defects:

3. Sn substitution for VO group
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1x3x3 supercell

126 atoms with PBC

❑ DFT calculations: VASP

❑ Spin-polarized PBE+U; U3d(V) = 3.5 eV

❑ Van der Waals correlation: optPBE-vdw

❑ Transport calculations: CINEB + LE methods

1. Create and optimize three possible Sn-related defects.

2. Calculate defect formation energy

3. Estimate defect concentration

4. Identify the most dominant defects 

5. Study charge carrier transport

Statistical model with charge neutrality

𝑬𝒇 𝑿𝒒 = 𝑬𝒕𝒐𝒕 𝑿
𝒒 − 𝑬𝒕𝒐𝒕 𝐛𝐮𝐥𝐤 −

𝒊

𝒏𝒊𝝁𝒊 + 𝒒 𝑬𝒗𝒃𝒎 + 𝑬𝑭 + 𝑬𝒄𝒐𝒓𝒓

via electron polaron hopping

Defect concentrations under thermodynamic equilibrium

in experimental condition

Without doping With Sn doping

SnVO
vacO1

C0 ~ 1016 cm-3 C0 ~ 1019 - 1021 cm-3

The electron prefers to localize as polaron (𝜂−)

rather than free electron (𝑒−). 

Er = 0.28 eV

The 𝜂− could act as charge carriers.

Both defects can provide 𝜂− but they may be 

trapped at defect center.

❑ Sn dopant incorporates in the form of SnVO.

❑ The SnVO generates more bound polarons concentration as the Sn doping concentration increase. 

These polarons could be thermally activated and mobile as charge carrier of the system, resulting 

in improved electronic conductivity due to more numbers of charge carriers.

❑ The SnVO acts as a repulsion center and may not enhance Li-coupled polaron transport. 

Objective

Methodology

6. Study Li transport

Computational details

Results and discussion

Defect structures and their formation energies
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Polaron trapping in SnVO

Inter-layer polaron escaping
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Systems V (eV) Ea (eV) C0 (cm-3)

SnVO (1%) 0.37 0.55 1x1020

vacO1 0.41 0.60 3x1016

pristine 0.00 0.21 4x104

Polaron in SnVO is trapped by the potential (V) of 0.37 eV and the effective barrier (Ea) of escaping 

outward the defect center is 0.55 eV, which is slightly less than those in vacO1. 
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1D Li intercalation
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Li-coupled polaron transport in SnVO

The Sn defect center could slow down Li-coupled polaron diffusion with effective barrier of 1.01 eV 

in Sn-channel and 0.55 eV in polSn channel as compared to pristine V2O5 (0.26 eV).

Conclusions
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